If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+20x-17=0
a = 8; b = 20; c = -17;
Δ = b2-4ac
Δ = 202-4·8·(-17)
Δ = 944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{944}=\sqrt{16*59}=\sqrt{16}*\sqrt{59}=4\sqrt{59}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{59}}{2*8}=\frac{-20-4\sqrt{59}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{59}}{2*8}=\frac{-20+4\sqrt{59}}{16} $
| 3n2-7n)+(7n2+n=1) | | 2xx=21 | | -17=3r+8r | | 14x2-882x=0 | | 1/4y-12=13 | | 6⋅(3x)=300 | | –4g+7=–4g−2 | | 403.92=9(0.09m=30.80+0.20(30.80)) | | (2s+4)=43.2 | | 3c+8=8+3c | | 2^x-5=112 | | 6(2x+3)=-2(-x+1) | | 7(1+6x)=343 | | 38+9=x | | 2^x-5=11 | | 3x+6+3x=-17 | | -2+5a-3= | | 3x^2=-6x+4) | | y-1+4y=14 | | 3(x+2)=-4(x-12) | | 2(2x+1.5)=8-x | | g+2g=352 | | –(h+13)=–7 | | 8x^2-7x=-7x^2+2 | | 45+x=2x | | (15+a)/4=5 | | 1/2g=352 | | 2x(x+3)=3x-2 | | (5m-42)/10=1 | | 5•4/5x=6 | | g+g/2=352 | | 4÷3(2x+5)=14 |